Speech signal enhancement through adaptive wavelet thresholding
نویسندگان
چکیده
This paper demonstrates the application of the Bionic Wavelet Transform (BWT), an adaptive wavelet transform derived from a nonlinear auditory model of the cochlea, to the task of speech signal enhancement. Results, measured objectively by Signal-to-Noise ratio (SNR) and Segmental SNR (SSNR) and subjectively by Mean Opinion Score (MOS), are given for additive white Gaussian noise as well as four different types of realistic noise environments. Enhancement is accomplished through the use of thresholding on the adapted BWT coefficients, and the results are compared to a variety of speech enhancement techniques, including Ephraim Malah filtering, iterative Wiener filtering, and spectral subtraction, as well as to wavelet denoising based on a perceptually scaled wavelet packet transform decomposition. Overall results indicate that SNR and SSNR improvements for the proposed approach are comparable to those of the Ephraim Malah filter, with BWT enhancement giving the best results of all methods for the noisiest ( 10 db and 5 db input SNR) conditions. Subjective measurements using MOS surveys across a variety of 0 db SNR noise conditions indicate enhancement quality competitive with but still lower than results for Ephraim Malah filtering and iterative Wiener filtering, but higher than the perceptually scaled wavelet method. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
An Improved Speech Signal Noise Reduction by using a New Thresholding Algorithm
In this paper, we propose a new adaptive wavelet thresholding method for using in speech Enhancement. This modified version of the wavelet thresholding method updates an adaptive threshold in each frame. In the proposed method the selection of the wavelet threshold value depends on the estimates of the clean speech signal features. The evaluation results show that by using the specific features...
متن کاملNew Adaptive Speech Enhancement System Using a Novel Wavelet Thresholding Technique
A new adaptive speech enhancement system, which utilizes a second-generation wavelet transform (SGWT) decomposition and a novel adaptive subband thresholding technique, is presented. The adaptive thresholding technique is based on accurate estimation of subband segmental signal-to-noise ratio (SegSNR) and voiced/unvoiced classification of the speech. First, the speech signal is segmented and ea...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA new approach for speech enhancement based on the adaptive thresholding of the wavelet packets
In this paper, we propose a new speech enhancement system using the wavelet thresholding algorithm. The basic wavelet thresholding algorithm has some defects including the assumption of white Gaussian noise (WGN), malfunction in unvoiced segments, bad auditory quality, etc. In the proposed system, we introduce a new algorithmwhich does not require any voiced/ unvoiced detection system.Also, in ...
متن کاملEnhancement of Speech Signal by Adaptation of Scales and Thresholds of Bionic Wavelet Transform Coefficients
This paper proposes a speech signal enhancement method in which the wavelet transform scales and thresholds both are adaptive depending on the input noisy signal affected by Additive White Gaussian Noise (AWGN). The proposed Estimated Noise and Adaptive Threshold Bionic Wavelet Transform (ENAT-BWT) method analyses the incoming noisy speech signal at 22 scales, from 7 to 28, of the BWT for negat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Speech Communication
دوره 49 شماره
صفحات -
تاریخ انتشار 2007